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Abstract

We consider an Abel equation 3’ = p(z)y* + q(x)y® with p(z), q(x) are
polynomials in z. A center condition for this equation (closely related to the
classical center condition for polynomial vector fields on the plane) is that
yo = y(0) = y(1) for any solution y(x). This condition is given by vanishing of
all the Taylor coefficients vy (1) in the development y(z) = yo+ > ooy vk () ys.
A new basis for the ideals Iy = {vs, ..., v} has been produced in [2], defined
by a linear recurrence relation. In this article we discuss some questions
concerning the behavior of the ideals I; and some other questions, closely
related to this subject.
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Chapter 1

Research objectives

1.1 Introduction

In [7] H.Poincaré defined the notion of a center for a real vector field on the
plane

{ T=f ($ ] y)

y=y9(z,y)

as an isolated singularity surrounded by closed integral curves. He showed
(see [8]) that a necessary and sufficient condition for a polynomial vector
field (i.e. f(z,y) = P(z,y) , g(z,y) = Q(z,y) are polynomials in z, y )
with a singular point with pure imaginary eigenvalues, to have a center at
this point is the annihilation of an infinite number of polynomials in the
coefficients of the vector field. The problem of explicitly finding a finite basis
for these algebraic conditions (the problem of the center), was solved in the
case of quadratic vector fields by the successive contributions of H.Dulac,
W.Kapteyn, N.Bautin, N.Sakharnikov, L.Belyustina, K.Sibirsky and others
(see e.g. [1], [9]). The complete conditions on P(z,y) , Q(z,y) of degrees
higher then 2 under which the system has a center are still unknown.



1.2 Description of the problem

1.2.1 The center problem

We will consider the following formulation of the center problem: Let P(z,y),
Q(z,y) be polynomials in z, y of degree d. Consider the system of differential
equations

t=-y+P (iﬁ ) y)

{y=x+Q(3f,y) (1)

We will say that a solution z(t), y(t) of (1.1) is closed if it is defined in the

interval [0, %] and z(0) = z(to), y(0) = y(to). We will say that the system

(1) has a center at 0 if all the solutions around zero are closed. Then the

general problem is: under what conditions on P, the system (1.1) has a
center at zero?

1.2.2 Reduction to the Abel equation

It was shown in [4] that one can reduce the system (1.1) with homogeneous
P, Q of degree d to the Abel equation

y' = p(x)y’ + q(z)y’ (1.2)

where p(z), ¢(z) are polynomials in sinz, cosz of degrees depending only
on d. Then (1.1) has a center if and only if (1.2) has periodic solutions on
0, 27], i.e. solutions y = y(x) satisfying y(0) = y(27).

1.2.3 Classical approach to the study of the Abel equa-
tion

We will look for solutions of (1.2) in the form
y(@,%0) =y + Y vs(z, Ny,
k=2

where y(0,y9) = o, and v turn out to be polynomials both in z and A,
where A = (A, Ay, . ..) is the (finite) set of the coefficients of p, g. Shortly we
will write vg(z).



Then y(27) = y(2m,y0) = yo + ka(%r)yg and hence the condition
k=2
y(2m) = y(0) is equivalent to v (27) = 0 for k = 2,3,... 00,

Consider an ideal J = {vy(27), v3(27), ... vx(27), ...} C C[\]. By Hilbert
Basis theorem there exists dy < o0, s.t. J = {v2(27), v3(27), ... v4,(27)}.
After determination of dy the general problem will be solved, since we get
finite number of conditions on A, which define the set of p, ¢ having all the
solutions closed . The problem is that the Hilbert theorem does not allow us
to define dy constructively.

1.2.4 Modified approach to the study of the Abel equa-
tion

Let us study instead of J C C[A] the polynomials ideal I C C[\,z|, I =
{vo(2), v3(2), ... v6(2),...} = U I, where I, = {vy(z),v3(x), ... vx(2)}.

k=2
The classical problem is to find conditions on p, ¢, under which x = 27 is a

common zero of all I.
Our generalized center problem consists of the following:

a) Study the behavior of I} as the ideals of univariate polynomials in z,
ie.

1. For given p, ¢ find zeroes in z of I, k =2,... and of [ = U 1.
k=2
11. For a given set of numbers find conditions on p, ¢, under which these

numbers are common zeroes of 1.

b) Find the stabilization moment of the set of common zeroes, i.e.
1. For given p, ¢ find d, for which the set of common zeroes of I is equal to
the set of common zeroes of 1.
11. For given set of common zeroes of I find d, for which it is equal to the set
of common zeroes of I;. Under which conditions on p, ¢ is it possible?

c¢) For given p, ¢ find d, for which I = I; (Bautin’s problem).



1.2.5 Main recurrence relations

In what follows we shall study Abel equation (1.2) with p, ¢ the usual poly-
nomials in z instead of trigonometric ones. In this case we say that the
equation (1.2) defines a center if y(1,yy) = yo. Although this property does
not correspond to the initial problem (1.1), it presents an interest by itself
and it has been studied in [5], [6] and in many others articles. Our main goal
is to study the generalized center problem for this case, our first goal is to
study part a) of it.

One can easily show (see e.g. [2]) that vg(x) satisfy recurrence relations

@ Y wl@) ta@) Y w@@un), nz2 O

i+j=n i+j+k=n
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It was shown in [2] that in fact this recurrence relations can be linearized,
i.e. the same ideals I;’s are generated by {11, ...¢}, where ¢ (x) satisfy
linear recurrence relations

Pi(z) =1 (1.4)
Yn(z) = —(n — D)Yn_1(z)p(x) — (1 — 2)¢bn_a(x)q(z), n > 2

which are much more convenient then (1.3). We call (1.4) the main
recurrence relation for the main problem.

1.2.6 The first model problem

Let us state an auxiliary problem:

The first model problem : Given p(z) , Qo(z) . Define Qx1(z) by



xz

recurrence relation Qy1(z) = / p(t)Qr(t)dt , k > 0. Study the generalized
0
center problem for the ideals I = {Qo(z), ..., Qr(z)}.

As it was shown in [2], the same ideal is generated by the polynomials P,

i=0,. ..k where Pi(z) = /O " Pi)g()dt, P() = /O p(®)dt, g(z) = O (x).

Hopefully this problem can help us to study the main problem (1.4). It
allows for “analytic” solutions (through generating functions).

For the main problem the first few ideals I, are very similar to the first
few ideals of the first model problem , but startaicng with the Ig essentially

nonlinear equations with respect to Q(x) = q(t)dt appear. This fact
0
presents the main difficulty in analysis of the problem (1.4).

1.2.7 Main conjecture and known results

The following conjecture for the main problem (1.4) has been proposed in [2]:

1= U I, has zeroes aq,...a; , a; = 0 if and only if
k=1

P(a) = / “p(t)dt = PW(2)) , Q) = / " g)dt = QW ())

where W (z) = H(fv — ai),

P, ) are some polynomials without free terms.

Exactly the same conjecture can be stated for the first model problem,
with @ = Q. One can easily show (see [2]) that these conditions are suffi-
cient for zeroes of W to be common zeroes of I in each of these problems. It
is not clear yet if these conditions are also necessary.

The following particular results are known:
1) The conjecture is true for P(z) , Q(x) up to degree 3 and for some
cases of degree 4 (see [2]).



k 0o
2) For the first model problem if P(z) = W(z) = [ [(z — a;) , then | ] Iy
=1 k=1
has zeroes a1, . . . ay if and only if Qo(z) = Qo(W (z)) (see [3]).
3) For the first model problem combinatorial estimation of the I;’s sta-
bilization moment is obtained (see [10], [11]).

1.2.8 Results

We present the following results:

a) Some remarks, connected to the first model problem. They can be
useful as a tool for an estimation of the number of surviving zeroes (chapter
2).

b) We have obtained the number of conditions, which should be checked
in order to say, that the hypothesis for the first model problem is true, and
some remarks about sufficiency of this number (chapter 3).

¢) Maximal number of zeroes of I for the recurrence relation (1.4) is ob-
tained (chapter 4).

d) Verification of the main conjecture 2.7 for the main problem (1.4) with
the degrees of P, Q up to 4 and in some cases of higher degrees . It was done

using computer symbolic calculations with some convenient representation of
P and @ (chapter 5).



Chapter 2

Some remarks around the first
model problem.

2.1 “The zero model problem.”

Consider so called “the zero model problem” : Given ¢g(x) . Define
¢r+1(x) by recurrence relation

Srni(z) = / ou()dt, k> 0.
0
Study the generalized center problem for the ideals I, = {¢o(z), ..., dr(x)}.
Claim: All ¢r(x) may have the only one common zero — 0.

This consideration may be useful as a method for the estimation of the
number of zeroes.

Proof:
1) Let ¢4(z) has roots a; # as and they are common zeroes of ¢o(z), ..., pa(x).
Then

¢d(a1) - 0: ¢:i(a1) =0 PRI Eid)(al) - Oa

therefore ¢q(z) = (z — a1)4™15(z).
Similarly ¢q4(z) = (z — a2)**1Ss(x), hence

¢a(w) = (2 — a1)"" (v — a2) 'S (),

10



and therefore deg ¢q(x) > 2d + 2. But deg ¢pa(x) = deg do(z) + d = 2d. Con-
tradiction.

2) Therefore the ideal may have only one zero. Obviously if ¢¢(0) = 0,
then 0 will be such common root. Assume now that ¢,(0) # 0, but a is a
common root of all ¢y (x).

If ¢o(z) = (x — a)*Sy(x), So(x) is a polynomial, then obviously ¢;(x) =

(z — a)**/Sj(z) with Sj(x) - a polynomial. But also ¢;(z) = 275;(z),
and hence ¢;(z) = 27(z — a)**iS;(z), therefore deg ¢a(x) = j + (k + j) +
deg S;(z) > 2j + k. But if deg ¢o(z) = d, then deg pa(z) = d + j. Taking
j=d—k+1, we get contradiction.

2.2 Some remarks around the first model prob-
lem.

Using the same technique as in the proof of Claim, we can make the following
remarks: .

a) Consider the first model problem Q,(z) = / p(t)Q;-1(t)dt with

0
deg Qo = d, degp = m. Let a, 0 be common zeroes of all Q;(x) and p(0) # 0,
p(a) # 0. Then

Q;(z) = (v — a)* 27 S;(z), where S;(0) # 0, S;(a) # 0.

So, the degree of S;(z) is (d —k — 1) + j(m — 1) and it grows on m — 1 on
each step (j +— j+1). Then we get

p(@)Sj-1(x) = (k + j)zS8j(x) + (I + j)(z — a)S;(2) + (z — a)zS;(x).

As the converse recursion this formula may be useful for determination which
Qo corresponds to the given @Q);, p(x). Since this formula was deduced in as-
sumption that a,0 are common zeroes of all Q;(x), this formula has to lead
to the contradiction for some @;(z) and p(z).

b) Similarly if p(0) = 0, p(a) # 0 we obtain
Q;(z) = (v — a)*72"2 S;(z), where S;(0) # 0,5;(a) # 0.

11



Then the degree of S;(z) is (d — k — 1)+ j(m — 2) and it grows on m — 2 on
each step. The “converse recursion” formula in this case is

p(2)S;_1(z) = (k + 7)z*S;(z) + (I + 2j)(z — a)xS;(z) + (v — a)xQS;-(:v).

¢) Similar recursive formulae are obtained for the case when p(0) # 0,
p(a) = 0 (the growing on m — 2) and for the case when p(0) = 0, p(a) =0
(the growing on m — 3).

12



Chapter 3

The lower bound for the
number of conditions, which
are necessary for the proof of
the conjecture for the first
model problem.

3.1 Introduction.

We are interested in proving the main conjecture 1.2.7. for the first model
problem. The following theorem was proved by M. Briskin in [2]:

Theorem 3.0. Let

v

P(z)=W(zx) = H(m —a;), a1=0, a;F#a;

=1
Let Q(t) be a polynomial of degree mv + o, 0 < o < v — 1. Denote a “mo-
ment” Vi(z) = / P'(t)q(t)dt. If ai,...,a, are common zeroes of m + 1

consecutive momeonts Vi(z), Veg1(x), ..., Vigm(x) for some £ > 0, then a =0
and Q(z) can be represented as Q(z) = Q(W), for a certain polynomial Q of
degree m without free term. If we know a priori that o = 0 then vanishing
of only m moments Vi, . .., Vepm_1 tmplies Q = Q(W).

13



The results of this chapter give a generalization of this result and the
approach to prove it using completely different arguments.

More precisely, theorem 3.3 proves that m + 1 is necessarily for the state-
ment of the theorem 3.0 , i.e. it is impossible to decrease the number of
vanishing moments. Theorems 3.4 and 3.5 generalize this result for

v

W(z) = H(x —a)% =0, a#a

i=1
and
P(2) = W" + %0 a W'+ + .

Theorems 3.1 and 3.2 , which are particular cases of theorem 3.3 , describe
in all details the method introduced in section 3.2 and give a connection
between a composition of polynomials and linear algebra.

3.2 A convenient representation of P and ()
and algebra of compositions of polynomi-
als.

Assume we are interested in the checking if numbers 0, a are common zeroes

of our ideal I = U I. Let R(z) be an arbitrary polynomial of degree n.
k=0
Consider W(x) = z(x — a) - polynomial of the second degree. Notice, that

the derivative of W is a polynomial of the first degree W'(z), the polynomial
W (x)W'(z) has the third degree and so on. Generally, polynomials W (z)*
have degree 2k and polynomials W (z)* W'(z) have degree 2k + 1. Therefore
they are linearly independent and form a basis of C[z]. So, one can uniquely
represent any polynomial R(x) as a linear combination of polynomials W (x)*
and W (z)*W'(x). Hence the polynomial R(z) of the degree 2k or 2k + 1 we
will write in the form

R(z) = W(2)" (axW () +Bi) + W (2)" " (s W (2) + 1) + ... + (oW () +00),
or simply

R(z) = W*(au W' + B) + W ap s W' + Br1) + .. + (oW + By).

14



In general, if W(z) = z(x — a3)...(x — ar), degW(zx) = k, then any
polynomial R(z) can be uniquely represented in the form

R(z) = W™ (W +E W'+, +E W) 4 (AW W+ 4k ®),
(where, of course, W) is a constant).
Now we see, that to prove that / R(t)dt is a composition with W (z) we

have to prove that ¢; = 0 for 7 > 2, 0] =0,...,m.

Theorems 3.1 and 3.2 demonstrate the usefulness of this representation.
Also it will be widely used for the verification of the main conjecture (see
chapter 5) , where it seems to be the most convenient way of proving.

3.3 The lower bound for the number of con-
ditions, which are necessary for the proof
of the conjecture.

Theorem 3.1. Let P(z) = W(z) = z(z —a), a # 0.

Let Q be a polynomial of degree 2(m + 1) — o, « = 0, 1.

Denote V; = /a Pi(t)q(t)dt. Then the minimal necessary number n + 1 of

0
conditions V;, =0,...,V;. ., =0 (for different but not necessary consecutive

i, i.e. not necessary juri1 = jr + 1 ) for the conclusion Q@ = Q(W) for a
certain polynomial without free term is m~+ 1 and this result does not depend
on a. For any number of conditions which is less than m + 1 there exists @
unrepresentable as a composition with W, for which all V; listed above are
Z€roes.

Proof of the theorem 3.1.
Assume that / Pig=0for j = ji,J2,...,jns1. Notice, that for
0

q(z) = W™ (tmW' + Brn) + W™ (Wna W'+ Brt) + oo + (W' + o)

we get

/WjQZﬂm/ Wm+j+ﬂm_1/ W’"“‘1+...+ﬁ0/ W,
0 0 0 0

15



Our goal is to find minimal n, such that the system

( a .
/W“q =0
]W”q =0

4 0

/aWj"“q =0
\ Jo

will have the unique solution Gy =f; = ... = G, =0.

Denote W; = / W (t)?dt. Then this system can be rewritten in the form
0

ﬂme—l—jl + /Bm—IWm+j1—1 + -+ ﬂOW]& 0
BWmtjs  +  Po-iWigjymr + oo+ oW, =0
ﬁme—l—jn+1 + /Bm—IWm+jn+1—1 + e+ ﬂOan+1 =0
i.e.
le Wj1+1 et Wj1+m ﬂO
sz Wj2+1 e Wj2+m ﬂl -0
an+1 an+1+1 e M/jn+1+m Igm

Now we see that the linear homogeneous system with the (n+1) x (m+1)
matrix has the unique zero solution only if » > m and det of the squarmatrix
is nonzero. For n < m the system always has nonzero solution. The theorem
is proved.

Remarks:
a)To prove the conjecture for the first model problem it is enough to show
that for at least one special sequence ji, ..., jme1 the
Wi Wi o Wigm
det sz Wj2+1 T Wj2+m £0
an+1 an+1+1 e an+1+m

16



b) Let Wy, = / W (t)*(W'(t))"dt. Then the formula for W, is ob-
0

tained:

0
(—1)Fa2k+2n+1k1 (20 — 1)1
9% (2k + 2n + 1)

c¢) From [2] follows that

Wi Wirr o0 Wigm
Dy = : : : £ 0.
Wk+m Wk+m+1 Tt Wk+2'm

For instance,

Dy = Z (=) WooyWoy+1 - = Wotm)tm =

0€So,m

2m? 4+ 2m+3 o 0(0)o(1) +!---(o(m) + m)!
- Z (=1) 2m(m+1) (25 (0))!! - - - (20(m) + 2m + 1)!! 7

UeSO,m

for any m.

d) Using “Mathematica” we have computed some Dy j and received very
nice expressions:

17



Dy =22 3* 5

Dy =2 3% 5 7

Dyy =28 3% 5 7 11 13

Dgy =290 30 5 7 11* 13 17

Dys =2"3" 5 7 116 13° 17 192

Dyg =2%31 57 77 115 137 17° 19* 232

Dyp =237 5 77 116 137 177 195 23* 29
Dgg =2% 32 5% 77 117 137 17° 198 23% 29° 317

e) Deducing (b) we have obtained for nothing the following very nice
combinatorial identity:

- i (k+d)2  Kl(2n— 1)
21 ( n ) 2k + 2+ 1)1 (2k+2n+ DI

=0

Theorem 3.2. Let P(z) = W(z) = z(z — a)(x — b),

a#b, ab#0.

Let Q be a polynomial of degree 3(m +1) —a, a =0,1,2.

Denote Vi(z) = / Pi(t)q(t)dt. Then the minimal necessary number n + 1

0

of conditions Vj (a) = 0,V;,(b) =0,...,V, .. (a) =0,V .. (b) =0 (for dif-
ferent but not not necessary consecutive ji) for the conclusion @ = Q(W)
for a certain polynomial QQ without free term s m + 1 . For any number

of conditions which s less than m + 1 there exists (Q unrepresentable as a
composition with W, for which all V;(a), V;(b) listed above are zeroes.

Proof of the theorem 3.2.

18



a b
Assume that / Pig=0, / Plqg=0for j = j1,j2,.-, jns1. For
0 0

q(z) = W™ (W' + B W' + %) + W™ N et W+ Bone W 4 Y1) + ...
+ (W' + BoW" + 7o)

we get

/ qu: /Bm/ Wm+jW”+ﬂm_1/ Wm+j71W//+ ---+ﬁ0/ WjW”—|—
0 0 0 0

+7m/ Wm+j+7m_1/ Wm+j‘1+...+70/ Wi,
0 0 0

since the coefficients by « are of the form W*W’ and hence they are equal

Q
to zero. And the similar expressions hold for b instead of a.

Our goal is to find minimal n, such that the system

( a b
/ Wig =0 ,/ Wig =0
0 0
a ) b ]
/ W2q =0 ,/ W»2qg =0
s Jo 0

a b
/ Wintig =0 ,/ Winlg =0
\ Jo 0

will have the unique solution By = 1 = ... =0 =% =M = ... =
Y = 0.

This system is equivalent to the following:

Zﬂi/ Wj8+iWI'+Z’Yi/ Wit =0,s=1,...,n+1
i=0 0 i=0 0

m b . . m b . .

Zﬁi/ WJS“W”—i—Z%-/ Wit =0 s=1,...,n+1
i=0 0 i=0 0

19



Denote -
Fula)= [ W W
0

Gri(z) = Aﬁwwﬂw

Then we get the following system:

( ﬂOFjl,O(a) +ﬁ1Fjl,l(a) +e +ﬂijl,M(a) +
+%Gi0@)  +nGja(e) +-- +1mGim(a) =0

BoFj, 0(a) +61F;1(a) 4+ +0umFj,m(a) +
+7%Gj0(a)  AmGhi(a) 40 FYmGim(a) =0

ﬂOF}'n+1,0(a) +ﬂ1F}n+1,1(a) +oe +ﬂijn+1,m(a)
+70Gjn+1,0 (CL) +71Gjn+1,1(a) +e +7mGjn+1,m (a) =0

BoF}, 0(b) +61F;1(0) 4 +BmFjm(b) +
+%G500) AmGH(0)  +0 A mGHm(b) =0

BoFj,0(b) +61Fja(0)  +-0 +BmFim(b)  +
+70Gj2,0 (b) +71Gj2,1(b) +- +’VmGj2,m (b) =0

BoFj,0(b)  +B01F;, 1(0) +-- +B8nFj . m®)  +
{ +7G,0,000)  +711Gj 0 1(00) +- +YmGl o m(b) =0

- {FMW+GMW=0
F0)B+Gb)y=0"

20



where

Bo Yo
B 4!
p=1 . |,r= ;
Prm Yom
Fh; a j1,1(a) e F}l,m(a)
Ez, a jz,l(a) e F}z,m(a)
Jn+1 0 Jn+1 1(0,) U F}n+1:m(a)
Jl 0(“ Jl 1(0,) e Gjl,'m(a)
12 0(“ 32 1(0,) e szml(a)
J +1, 0 ] +1, 1(&) e Gjn+1 m(a)
Jl 0 Jl 1(b) e Fjl,M(b)
J2 0 Jz 1(b) e sz,m (b)
Jn+1: ]n+1:1(b) e an+1,m(b)
Jl 0<b GJl l(b) e Gjl,M(b)
o(0)  Gu(B) - Gam(b
G(b) _ J ,‘0< ) J ,.1( ) . J ,' ( )
Gjn+1,0 (b) Gjn+1,1(b) e Gjn+17m (b)

Now we see that the linear homogeneous system with the (2n + 2) X
(2m + 2) matrix has the unique zero solution only if n > m and det of the
squarmatrix is nonzero. For n < m the system always has nonzero solution.
The theorem is proved.

Remarks:
a) For the consecutive set of indexes j, . .., jmi, starting from [, we get
det H is a homogeneous polynomial in a, b of degree 3[(n+1)(2n+1)+1(2n+

2)].
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b) Using “Mathematica” we computed det Ho 1 = 55(ab(a—b))®, det Hy, =

=g(ab(a — b))'® and so on.

c¢) Obviously det H does not depend on the change a — a — b.
d) Conjecture: det Hy,, = Const[ab(a — b)]"+DE )

Theorem 3.3. Let

v

P(z) =W(z) = H(x —a;), =0, a#a; for i#j.

=1
Let Q(t) be a polynomial of degree vim +1) —a, a =0,...v — 1.
Denote Vi(z) = / Pi(t)q(t)dt. Then the minimal necessary number n + 1

of conditions V}(x)1 =0 for x = as,...,a, (not necessary consecutive ) for
the conclusion Q = Q(W) for a certain polynomial Q without free term 1s
m+ 1. For any number of conditions which s less than m + 1 there exists @
unrepresentable as a composition with W, for which all V;(ay) = ... = Vj(a,)
listed above are zeroes.

Proof of the theorem 3.3.

ag .
Assume that / Plq=0, for j = 31,72,y Jns+1, K =2,...,v. For

ay
() = W™ W +EW"+. . +E W)+ (W +EW" .+ W)
we get

aj m v . ap . .
[wra=y (Z i [ W’““W@)
ai =0 j=2 1

a

a
since the coefficients of the form / WEW' are equal to zero.
0

Our goal is to find minimal 7n, such that the system
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4 a2 . v .
/ Wig =0 ,..., / Wig =0
al al
as a

/Wf2q =0 ,..., / Wiqg =0
< ai ai

/2Wj"+1q =0 ,..., /UWj"“q =0
\ Ja; al

will have the unique solution {cf}f::g:n

We have the linear system with a matrix (v — 1) x (n 4+ 1) and with
(v —1)(m + 1) unknown variables. This system may nave nonzero solution
only if n > m, q.e.d.

Remark: The structure of the system for the consecutive set j; =
0,...,Jm+1 = m is the following:
Denote

. a . .
ui:,i(al) = / Wk-l—zw(])’

w (ay) = (ui,i(al))k,i—o, m’?

aj
The conditions / Wkg=0fork =0,...,m are equivalent to the system

ai
w’(ag)ct + - +u”(a)c” =0,
and finally we get the system

u?(ay) -+ u”(ay) c
u2(‘a,,) - u¥(a,) c
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Remark: We can state a conjecture: the determinant of this matrix is
equal to Const| H (a; — a;)]".

n>i>j>1

Theorem 3.4. Let
Pz) =W(z) = (z—a)" - (z — ap)*,

a1 =0, a; # a;j fori # j,degP=>7_ ki =k.
Let Q be a polynomial of degree Q@ = k(m+1) —«a, «=0,...k — 1.

Denote V;(z) = / Pi(t)q(t)dt. Then the minimal necessary number N
ay
of (not necessary consecutive) conditions Vj(z) = 0 for v = ay, ..., ax for the
conclusion Q = Q(W) for a certain polynomial Q without free term is the
minimal integer which is greater or equal than % For any number
of conditions which is less than N there exists Q unrepresentable as a com-

position with W, for which all Vj(ay),...,V;(ax) listed above are zeroes.

Proof of the theorem 3.4.

ag

Assumethat/ Pig=0,for j=ji,....jn, k=2,..., 0.

ay
For

@) = W™ W +E W'+, +E W) 4 (W W+, +cEw®)

we get
a m k a
/ W=y ( i / lwkﬂw@)
a1 i=0 \j=2 @
since the coefficients of the form WH*W' are equal to zero.

As before, we get the linear systergl with (m + 1)(k — 1) unknown variables
and the matrix of the size N x (v — 1). This system may have nonzero so-
lution only if the number of equations is less or equal than the number of
unknowns, so N(v — 1) > (m+1)(k — 1), q.e.d.
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Theorem 3.5. Let
W(z) = (z—a)" - (z — ar)™,

a1 =0, a; # aj fori#j, degW =57 ki=k, P(x) =vW"+...+ W,
deg P = kn.
Let Q be a polynomial deg@Q =v(m+1) —«a, «=0,...v — 1.

Denote V;(z) = / Pi(t)q(t)dt. Then the minimal necessary number of (not

necessary consecutlz've) conditions Vj(x) = 0 for x = as, ..., ay for the con-
clusion Q) = Q(W) for a certain polynomial Q without free term is m + 1.
For any number of conditions which is less than m + 1 there exists Q) un-
representable as a composition with W, for which all Vi(ay), - .., V;(ax) listed
above are zeroes.

Proof of the theorem 3.5.

skn

We can notice, that P* = Z ¢;W'. Then we must simply repeat what
1=0
was said in each of the previous theorems.
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Chapter 4

Maximal number of surviving
Zeroes.

4.1 Connection between the first model prob-
lem and the main problem. A convenient
basis for the ideals I,k = 2,...6.

The computations in the subsection 4.1 are taken from [2].

Direct computations (including several integrations by part) give the fol-
lowing expressions for the first polynomials v (z), solving the recurrence
relation (1.4):

Pa(z) = —P(z)
Ua(z) = Px) - Q(x)

wia) = P +3P@QE) - [ ar@ar

wsle) = PHa) = 6P"@Q) - [ a0
+4P(x) /0 ’ q(t)P(t)dt + gQ2($)

Uo(z) = —P%(x)+10P*@)Q(x) + 5P(x) /qu(t)PQ(t)dt
_8Q(x)P(x) — 10P%(x) /0 " J(OP()dt + 40(z) /0 P
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- [CawPwi [ po@w

0

Consequently, we get the following set of generators for the ideals I, k =
2,...,6,

I, = {P}
I3 = {P7 Q}
L = {(PQ / 4P}

K= P [an [
o= P [ar [ar [P~ 5p0%)

Therefore, if a € Y (I5) is a zero of the ideal Ig, it must satisfy the following
equations:

P(a) =0, Q(a) =0

0, Qa
/ " P)g(t)dt = 0 (4.1)
/ " P21)g(t)dt = 0

/0 P a)a(tyin / ()@Y (W)dt = 0

Notice that the third and the fourth equations coincide with the moment
equations of the first model problem (with the same p(z) and Qo (z) = Q(x)).
The fifth equation contains the corresponding term of the model problem and
an additional term, which is (for the first time) nonlinear in Q.

Let us assume now that the set of zeroes of I consists of the points
a; =0,as,...,a,, a; # a;. In particular, a; are common zeroes of P and @,
and we can write

P(z) = W(z)P(x)
Q(z) = W(z)Q: ()
where W (z) = [[_,(z — a;).
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Substituting this representation into the last three equations of (4.1) and
integrating by parts, we get fori =1,...,v,

/ W2(p1Q1 — Pig1) =0
0

/ W3P (p1Q) — Pig1) =0
0

a; 2 a;
/ WP (p1Q1 — Piq) — 3 / W3Q1(p1@Q1 — Pigi) = 0
0 0

Here py(2) = Pi(z), ¢1(z) = Qi ().

4.2 Maximal number of surviving zeroes.

Theorem 4.1.  Either the number of surviving different zeroes (including
0) of I is less or equal then (deg P + deg Q)/3, or P is proportional to Q.

k

Proof: Let P=WP,Q=WQ, W = H(:v — a;) -all surviving zeroes,
=1

deg P, = p, deg @1 = ¢. Consider the function f(z) = / W2(p1Q1 — g Py)dt

0
and assume first that p;@Q; — ¢ P1 # 0. Then f(z) = W3S(z), hence

deg f(x) > 3k. From the other side deg f(z) = 2k+(p+¢—1)+1 = p+q+2k.
So, p+ q + 2k > 3k.

Now let plQl — q1P1 = 0, i.e. (PlQl)l = 291]91- Denote PIQI by X, Ql
by Y. Then ¢; = Y', Pi = X/Y, hence X' = 2YV'% ie. £ =2Y je.
X = CYZ, i.e. P1Q1 = CQ%, qed
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Chapter 5

Verification of the main
conjecture.

5.1 The first note about rescaling of P and
Q.

As it was shown in [2], it is possible, using rescaling z — Ciz, y — Chy, to
make the leading coefficients of P, () being equal to any positive number. It
can be done if deg Q # 2deg P, but these cases will be not considered in this
article. So we will use polynomials P and @ in the form where the leading
coefficient equals either 1 or 2, i.e. if required we will be able to deal with
polynomials in the form (for W(z) = z(z — a)):

R(z) = W*W' + B + W N ap s W' + Br_1) + ... + (W' + o),

or

R(z) = WF + W W' + Br_1) + ... + (W' + By).

In what follows we shall assume that the highest degree coefficient is not
zero. For instance, for the case deg P=3, deg Q=4 we will assume that
P(x) = 223+ ... (terms of degree less than 3), Q(z) = z*+ ...(terms of de-
gree less than 4) and so on.
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5.2 The second note about rescaling of P and

Q.

Theorem 5.1. 1 = U I, generated by P, Q has zeroes aq,...,a, if
k=2
and only if I = U I, generated by \2P, A\Q () # 0) has the same zeroes.
k=2

Proof of the theorem 5.1.
Notice, that from the definition v (z) = Const [ pyg_1+Const [ qir_s,
and by induction

ZZJ()(.T)— 0

Yi(z) = 1

Po(z) = Co [p

Y3(z) = C31fpfp+032fq

Ya(z) = 041fpfpfp+c42fpr+C43fQIp

Ys(@)= Csy [p o[ [o+Cse [0 0 [a+Css [p[afp+Cs [afp[p+

C55quq

I

where C;; are numerical constants. The statement of the theorem follows
from the
Claim. In the expansion of ¢ (z) are those and only those integrals of

the form / P / q--- / q, for which 2 times the number of f q + the number
of [ pisequal to k— 1.

Now it is obvious, that if we replace p by A*p, ¢ by Ag, then ¢ (z) will
be multiplied by A*~!, and hence the zeroes of 9 (z) will not change. The
theorem is proved.

Proof of Claim.

Induction on k.

Assume the statement is true for £ — 1, k. Let us prove that it is true
for k£ + 1. Denote by N} the number of [ ¢, by N} — the number of [p. In
expansion of ¢, () there are integrals which appear from [ pyy, and for them
N =N Ng =N +1 hence 2N + NP = 2N+ N +1=k—-1+1=
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k, q.e.d. For integrals which appear from [ qi,_1 we get Nl =N, +1,
Ny.i = Np_j, hence 2N/ | + Ny | =2N; | +2+N;_, =k—-2+2=k, qed

Conversely, if we consider any integral of the form / D / q / p--- / q

with 2N + N¥ = k, then we can uniquely define an “appearance” of this

integral :
Jofafp-[a €id(x)
Jafp--[a €tplz)
Jp--[a €ps(x)

and so on.

5.3 Verification of the main conjecture for
the case deg P=3, deg Q=4

oo

The goal of this section is to prove that in this case I = U I}, can not have
k=1

zeroes, others then 0. The greater common divisor of 3 and 4 is equal to 1

hence in this case we can not represent P(z) = P(W(z)), Q(z) = Q(W(z))
with degW > 1 (here W(z) is polynomial, accumulating common zeroes),
so the conjecture for this case is true.

1) From the theorem 4.1. we get that the maximal number of surviving
zeroes is 2. And one of them is necessarily 0.

2) Assume that I has zeroes 0, a, (¢ # 0). Since zeroes of I should be
also zeroes of P and (Q , P and @ are necessary represented in the form (up

to rescaling)
P:WPI ) Q:WQla

where
W=z(x—a), degP, =1, deg@; = 2.

For such P, (Q numbers 0, a will be common zeroes of ideals Iy, I, I3. Now
represent

P=W+Ha, Q =W+FW 4.

Then we will directly calculate, using the “Mathematica” software, ideals I,
I, Is, I7, I3 and we will show that for all «, 3, they can not have zeroes 0,
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a. It will complete verification of the main conjecture (1.4) for this case.

3) We will calculate consecutively v (a), using the following “Mathemat-
ica” program:

n=Input[];
% n-the number of ideals to be computed %

W=x(x-a);

W’=2x-a;

P=Wx(W’>+al);

Q=Wx(W +bt*W’ + ga);

p=D[P,x];

q=D[Q,x];

psil[0]1=0;

psil1]l=1;

psil[2]=-P;

Do[psilil=[Integratel
-(i-D)psili-11*p-(i-2)psili-2]*q,x],{i,3,n}];

x=a;

Do[Print [StringForm["psi[‘‘]=“‘",1i,
Simplify[psil[il]11],{i,1,n}];

Running this program, we obtain the following results:

_ —(a® 2a®>+TafB —T7))
Q/}4(a) - 210 )

7 2 _
%(a):a a (a —|—3f5aﬁ 37)'

Since a # 0, we get
aff —y=-2a*/7, alaff —v+a*/3) =0.

It can be satisfied only if « = 0, v = 2a?/7. Running the program for these
values, we get the following conditions:
a'l (13 — 21 4a?)

4414410

Ye(a) =
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_2 0,13 ﬂ
¥1(0) = 515315

from which we obtain # =0, a = £4/13/21, and for them we get
Yg(a) = —3668/9,

i.e. we obtain contradiction. The conjecture is verified.

5.4 Verification of the main conjecture for
the case deg P=4, deg Q=2

The goal of this section is to prove that in this case I = U I, has zeroes 0
k=1

and a (a # 0) if and only if Q(z) = W(z) = z(x — a), P(z) = P(W(x)) for

a certain polynomial P without free term..

Assume that I has zeroes 0, a. Since zeroes of I should be also zeroes of
P and @, P and @ are necessary represented in the form (up to rescaling)

PZWPlaQ:Wa

where W = z(x — a) , deg P, = 2 For such P, @ numbers 0, a will be
common zeroes of ideals Iy, I5, I3. Now represent P, = W + W'+~ . Then
computing the condition 0 = ¢4(a) = a®3/30, we obtain 3 = 0, q.e.d.

5.5 Remark about resultants.

Resultants give us a very powerful tool for checking, whether n + 1 poly-
nomials of n variables P,(z1,...,z,) € C|z1,...,2,] do not have common
Zeroes.

Consider one example. Assume we are interested whether polynomials
P(z,y), Q(z,y), R(z,y) have common zeroes. Compute Resultant[P, Q, z] =
fi(y) , Resultant[R, Q, z] = f2(y). If Resultant|fi, fo, y] # 0,then P, Q, R
do not have common zeroes.
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Indeed, if there exists common zero of all polynomials (zg, o), then

fi(yo) = f2(yo) = 0, hence Resultant[f;, f2,y] = 0, q.e.d.
The general construction is exactly the same.

5.6 Verification of the main conjecture for
the case deg P=4, deg Q=3

The goal of this section is to prove that in this case I = U I}, can not have
k=1
zeroes, others then 0. The greater common divisor of 4 and 3 is equal to 1,

hence in this case we can not represent P(z) = P(W(z)), Q(z) = Q(W ())
with degW > 1 ( here W (z) is polynomial, accumulating common zeroes),
so the conjecture for this case is true.

1) From the theorem 4.1. we get the maximal number of surviving zeroes
is 2. And one of them is necessarily 0.

2) Assume that [ has zeroes 0, a (a # 0). Since zeroes of I should be
also zeroes of P and (Q , P and @ are necessary represented in the form (up
to rescaling)

P:WP1,Q:WQ17

where
W=z(x—a), degP, =2, deg@; = 1.

For such P, (Q numbers 0, a will be common zeroes of ideals Iy, I, I3. Now
represent
Po=W4+pW +~, Q=W+«

Then we will directly calculate, using the “Mathematica” software, ideals I,
I, Is, I7, I3 and we will show that for all «, 3, they can not have zeroes 0,
a. It will complete verification of the main conjecture 1.2.7 for this case.

3) We will calculate consecutively v, (a), using the “Mathematica” pro-
gram, similar to above.
Running the program, we obtain the following results:
_d(2a*+Taf—T7)

Vala) = 210 ’
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a’ (4a* +11a% (aff—37)—66 (aff—7)7)
¢5(0,) = .
6930
From the first equation a3 = v — 2/7a?, substituting into the second equa-
tion, we obtain v = —a®/77. So, these and only these conditions force the
equations ¥4(a) = 0,15(a) = 0 to be satisfied. Obviously # may not be equal
to zero, so we can put « = —a?/77(3. Running the program for these values,

we obtain the following equations:

a't (1573 — 21 a* B + 2541 a? 3°)

Ys(a) = 534143610 3 ’
tnla) = 2a'® (—63954 a® + 819a® 3 + 3009391 32 — 112651 a* 33)
e 948906123165 3 ’

g(a) = (a'?(315517059a 4479666831492 —1036350a'° 32 —6465588052a* 3°
+151367370a®3* + 10626a°3(7543 + 931705°)))/(20166152929502580,3%).

We obtain three polynomials of two variables a, 5. Now according to section
5.5. we can compute

Resultant[ys(a), ¥+ (a), 8] = 171355466545636153516888971819 a’

—55381482335935291356128 a'? + 4434102226084608 a2,
Resultant|y(a), 1s(a), 3] = Const(216908655616510696903575187607931a°
+4587869622987216107761251882084'® — 1616048607975051451006084
+14080788862156800a%),

and computing resultant of the last two expressions (dividing by the proper
power of a) we get nonzero number, q.e.d.

5.7 Verification of the main conjecture for
the case deg P=4, deg Q=4

oo
The goal of this section is to prove that in this case I = U I, has common ze-
k=1

roes others than 0 if and only if either P(z) = P(W (z)), Q(z) = Q(W (z)) for
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certain polynomials P, Q without free terms, where W (z) = z(z — a), a#0,
or P is proportional to @ (and in this case W = P and again P = P(W),
Q=QW).

1) Let P, @ be not proportional. From the theorem 4.1. we get the
maximal number of surviving zeroes is 2. And one of them is necessarily 0.

2) Assume that I has zeroes 0, a. Since zeroes of I should be also zeroes
of P and @, P and @ are necessary represented in the form (up to rescaling)

P:WP17Q:WQ1a

where
W=z(x—a), degP, =2, deg @y = 2.

For such P, () numbers 0, a will be common zeroes of ideals I, I, I3. Now
represent

P1:W+’}/WI—05, Q1:W+5W1—ﬂ

Then we will directly calculate, using the “Mathematica” software, ideals I,
I, I, I7, Is and we will show that the only possibilities for I to have zeroes
0, a are either v =6 = 0 or P = @. It will complete verification of the main
conjecture 1.2.7 for this case.

3) We will calculate consecutively v, (a), using the “Mathematica” pro-
gram, similar to above. Running the program, we obtain the following results:

@ (Tad+2ad* (6—7)—T087)

Vala) = 210 ’

a’ (4a* (6 —7)+66a (ad—pB7v)+11a® (3abd—2ay— (7))
¥s(a) = 6930 |

Since a # 0, we get

2

;az(é —7) =By — ab,

(4a* + 22a*@)(6 — ) + (ad — B7)(66a + 11a*) = 0.
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If 6 = =, then from the first equation o = (3, and hence P = ). So, 6 # 7y
and dividing the second equation by § — v, we obtain = —3a?/11. Then
§ = T76v/a* + 227.

Running the program for these values, we get

—(a" 3a?+110) v (—4719a® 4+ 3a® — 17303 3 — 363 a* 7?))

Ve(a) = 10900890 '

If y=0, then 6 =0, q.e.d.
If 3 = —3a?/11, then 3 = «, hence § = v, and hence P = Q.

So,
3a5 — 4719a? — 363a*~?

b= 17303 ’
and running the program for these values (i.e. without «, 6, ), we get

Yr(a) = (2a"*(a—117)y(a+11v)(508079a>+711a’ —614775597* — 6299264 ~*

+99309903a%7*)) /1452013567609605
Pg(a) = (a'®(a—117)y(a+117v)(—165436111269a+23749415118a°+37532547a*°
+2001776946354972—2920126191268a*~* —28998322881a%v* —64672793651466a>v*
+4252091239473a%y* + 52235717949261a"+°)) /630388786350574791540.
Yo(a) = —(a*(a—117)y(a+117)(—166460483475a>+45913132984°+8200347a"°
+228961415432757°—436487623572a*y* —57479499994%72—49500160259550a~*
+782017522209a%y* + 20215061125875a"v°%) /3467138324928161353470

If v = +a/11, then 8 = —3a*/11, s0o @ = 3 and hence v =6, so P = Q.

If y=0, then 6 =0, q.e.d.

Otherwise we get 3 polynomials in two variables v, a. Computing resul-
tants, we get nonzero number, q.e.d. The conjecture for this case is com-
pletely verified.
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5.8 Verification of the main conjecture for
the case deg P=5, deg Q=2

The goal of this section is to prove that in this case I = U I, can not have

k=1
zeroes, others then 0. the greater common divisor of 3 and 4 is equal to 1,

hence in this case we can not represent P(z) = P(W(z)), Q(z) = Q(W (z))
with degW > 1 ( here W (z) is polynomial, accumulating common zeroes),
so the conjecture for this case is true.

1) From the theorem 4.1. we get the maximal number of surviving zeroes
is 2. And one of them is necessarily 0.

2) Assume that I has zeroes 0, a, a # 0. Since zeroes of I should be also
zeroes of P and (), P and @) are necessary represented in the form (up to

rescaling)
P=WP, Q=W,

where

W=z(x—a), degP, =3.
For such P, () numbers 0, a will be common zeroes of ideals I, I, I3. Now
we represent P, = WW'+ oW + W'+~ . Then we will directly calculate,
using the “Mathematica” software, ideals Iy, I5, Is, I7, I3 and we will show
that for all «, 3, they can not have zeroes 0, a. It will complete verification
of the main conjecture 1.2.7 for this case.

3) We will calculate consecutively v, (a), using the “Mathematica” pro-
gram, similar to above. The condition I, = 0 is

—a" /210 4+ a°(3/30 = 0,

from this we deduce 3 = a*/77. After substitution 3 we obtain the following

2
condition from I5 = 0: a®(—3a*a + 117) = 0, from which v = 31%04. After
substituting it into the conditions I = 0, I; = 0, I3 = 0 we get

o — 14413399 + 1089a® — 24994°a?

Ye(a) = —a 127126179180 ’
bo(a) = a1 — 1641486 + 12148 — 2730802
a)=a "«
4 316302041055 ’
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_ 11 9166433149773 — 175234322340° + 7320500

Ys(a) 1976282987091252840
4ot —302413186614a’a?® + 21130956a'*a? — 50781150a'2c*
a .
1976282987091252840

We obtain three polynomials of two variables a, o. Now according to the
section 5.5. we can compute Resultant|ys(a), 17(a), o, Resultant|¢s(a), ¥s(a), o],
and computing resultant of the last two expressions (dividing by the proper
power of a) we get nonzero number, q.e.d.

5.9 Verification of the main conjecture for
the case deg P=6, deg Q=2

The goal of this section is to prove that in this case I = U I, has zeroes 0
k=1

and a (a # 0) if and only if Q(z) = W(z) = z(z — a), P(z) = P(W (z)) for

a certain polynomial P without free term.

1) Assume that I has zeroes 0, a. Since zeroes of I should be also zeroes
of Pand @, P and @ are necessary represented in the form (up to rescaling)

P:WPIaQ:Wa

where W = z(x — a) , degP, = 2 For such P, @ numbers 0, a will be
common zeroes of ideals I, I, Is.

2) Now represent
Pi(z) = W? + aWW' + W + W' + 6.

Then we directly calculate, using the “Mathematica” software, ideals I, I5,
Is, I, I3 and we get v¥,(a) = 0 implies v = a?«/7, substituting it into
¥5(a) = 0 we obtain a’«(9a* — 394?03 + 1436) = 0, and hence either a = 0

9a%—39424

(and then v = 0) and we are done or a # 0 and then § = —=753
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Let us prove that in the second case we obtain contradiction. Running the
“Mathematica” program for these values, we get

a® o (7120219106 — 38367 a0 + 1234506 a5 42 — 342 a8 (1573 o2 + 1127 3))
62800332514920 ’

Ye(a) =

Po(a) = ...

So, we get 4 equations in 3 variables a, o, #, and using the same algo-
rithm as above we obtain the contradiction, which completes the proof of the
conjecture for this case.
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